Abstract

A Ca2+-activated K+ current was identified in neurons from the rat medial preoptic nucleus. Its functional role for the resting potential and for impulse generation was characterised by using the reversible blocking agent bicuculline methiodide. Acutely dissociated neurons were studied by perforated-patch recordings. The effect of bicuculline methiodide was investigated under voltage-clamp conditions to clearly identify the current affected. At membrane potentials > -50 mV, bicuculline methiodide rapidly (< 1 s) and reversibly blocked a steady outward current. Half-saturating concentration was 12 microM. The current amplitude increased with potential in the range -50 to 0 mV. The bicuculline-sensitive current was identified as an apamin-sensitive, Ca2+-dependent K+ current. It was neither affected by the GABAA receptor blocker picrotoxin (100 microM) nor by a changed pipette Cl- concentration, but was affected by substitution of extracellular K+ for Na+. The current was dependent on extracellular Ca2+ and was sensitive to 1 microM apamin but not to 200 nM charybdotoxin. A role for the Ca2+-dependent K+ current in setting the resting potential and controlling spontaneous firing frequency was observed under current-clamp conditions. Bicuculline methiodide (100 microM) induced a positive shift (5 +/- 1 mV; n = 18) of resting potential in all neurons tested. In the majority of spontaneously firing neurons, the firing frequency was reversibly affected, either increased or decreased depending on the cell, by bicuculline methiodide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.