Abstract
This article provides a brief discussion of the functional of super Riemann surfaces from the point of view of classical (i.e. not "super-) differential geometry. The discussion is based on symmetry considerations and aims to clarify the "borderline" between classical and super differential geometry with respect to the distinguished functional that generalizes the action of harmonic maps and is expected to play a basic role in the discussion of "super Teichm\"uller space". The discussion is also motivated by the fact that a geometrical understanding of the functional of super Riemann surfaces from the point of view of super geometry seems to provide serious issues to treat the functional analytically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.