Abstract

We argue that one can model deviations from the ensemble average in non-equilibrium statistical mechanics by promoting the Boltzmann equation to an equation in terms of functionals , representing possible candidates for phase space distributions inferred from a finite observed number of degrees of freedom. We find that, provided the collision term and the Vlasov drift term are both included, a gauge-like redundancy arises which does not go away even if the functional is narrow. We argue that this effect is linked to the gauge-like symmetry found in relativistic hydrodynamics [Ann. Phys. 442, 168902 (2022)] and that it could be part of the explanation for the apparent fluid-like behavior in small systems in hadronic collisions and other strongly-coupled small systems [Annu. Rev. Nucl. Part. Sci. 68, 211 (2018)]. When causality and Lorentz invariance are omitted this problem can be look at via random matrix theory show, and we show that in such a case thermalization happens much more quickly than the Boltzmann equation would infer. We also sketch an algorithm to study this problem numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call