Abstract

AimsThe modulatory effects of piperine on drug metabolizing enzymes play an important role in the control of pharmacokinetic and the bioavailability properties of the administered drugs. The present study investigated the effect of piperine and piperine-donepezil co-administration on cognitive functions and synaptic plasticity at hippocampal perforant pathway (PP) to dentate gyrus (DG) synapses in an experimental model of Alzheimer's disease (AD). Materials and methodsIntracerebroventricularly (ICV) streptozotocin (STZ) injected rats were treated once daily with piperine, donepezil and piperine combined with donepezil for 4 weeks. Cognitive performance was evaluated using passive avoidance and Morris water maze performance tasks. Analysis of evoked field potentials was done to explore possible effects on input/output response, paired-pulse facilitation and long-term synaptic plasticity (LTP) at PP to DG synapses of hippocampus. Key findingsRats subjected to ICV injection of STZ exhibited cognitive deficit associated with a hippocampal oxidative stress, effects that were reversed by chronic treatment with piperine or donepezil and or piperine combined with donepezil. Chronic treatment with piperine or donepezil restored the disruptive effects of STZ on LTP without altering basal synaptic transmission. SignificanceWe found that optimal hippocampal function is dependent on tissue redox homeostasis. Piperine might reduce the synaptotoxic effects of STZ on hippocampal synaptic neurotransmission and correspondently is a good potential for neuroprotection against oxidative damage from ICV injection of STZ. These results suggest that piperine or donepezil significantly ameliorate cognitive deficit and LTP induction by attenuating oxidative status.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call