Abstract

Fibroblast growth factor (FGF) signaling plays essential roles in tissue development and homeostasis. Accumulating evidence reveals that fibroblast growth factor 2 (FGF2) regulates ductal elongation, which requires cell proliferation and epithelial expansion in the mammary gland. However, the function and mechanisms by which FGF2 controls functionality of epithelial cells is less well defined. Here, we demonstrate the functional effects of FGF2 on bovine mammary epithelial (MAC-T) cells and the intracellular signaling mechanisms for these FGF2-induced actions. The current results show that treatment of MAC-T cells with a recombinant FGF2 induced cell proliferation and cell-cycle progression with increased expression of proliferating cell nuclear antigen and cyclin D1. Moreover, FGF2 increased phosphorylation of serine/threonine protein kinase (protein kinase B [AKT]), extracellular signal-regulated kinases 1 and 2 (ERK1/2), Jun N-terminal kinase (JNK), 70 kDa ribosomal S6 kinase (P70S6K), 90 kDa ribosomal S6 kinase (P90S6K), ribosomal protein S6 (S6), and cyclin D1 proteins. These FGF2-induced activations of signaling pathway proteins were inhibited by blocking AKT, ERK1/2, or JNK phosphorylation. The effect of FGF2 to stimulate MAC-T cell proliferation was mediated by activation of FGF receptors (FGFR) and AKT, ERK1/2, and JNK mitogen-activated protein kinase pathways in response to FGF2 stimulation. Furthermore, expression and activation of endoplasmic reticulum (ER) stress-related factors and ER stress-induced MAC-T cell death was reduced by FGF2. Together, these results suggest that the FGF2-FGFR-intracellular signaling cascades may contribute to maintaining and/or increasing numbers of mammary epithelial cells by inducing proliferation of mammary epithelial cells and by protecting cells from ER stress responses. Therefore, this study provides evidence that FGF2 signaling is a positive factor for mammary gland remodeling and for increasing persistency of milk production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.