Abstract

BackgroundPlants have evolved complex mechanisms to adapt growth and development to the light environment. The COP1/SPA complex is a key repressor of photomorphogenesis in dark-grown Arabidopsis plants and acts as an E3 ubiquitin ligase to ubiquitinate transcription factors involved in the light response. In the light, COP1/SPA activity is inhibited by photoreceptors, thereby allowing accumulation of these transcription factors and a subsequent light response. Previous results have shown that the four members of the SPA family exhibit partially divergent functions. In particular, SPA1 and SPA2 strongly differ in their responsiveness to light, while they have indistinguishable activities in darkness. The much higher light-responsiveness of SPA2 is partially explained by the much stronger light-induced degradation of SPA2 when compared to SPA1. Here, we have conducted SPA1/SPA2 domain swap experiments to identify the protein domain(s) responsible for the functional divergence between SPA1 and SPA2.ResultsWe have individually swapped the three domains between SPA1 and SPA2 - the N-terminal kinase-like domain, the coiled-coil domain and the WD-repeat domain - and expressed them in spa mutant Arabidopsis plants. The phenotypes of transgenic seedlings show that the respective N-terminal kinase-like domain is primarily responsible for the respective light-responsiveness of SPA1 and SPA2. Furthermore, the most divergent part of the N-terminal domain was sufficient to confer a SPA1- or SPA2-like activity to the respective SPA protein. The stronger light-induced degradation of SPA2 when compared to SPA1 was also primarily conferred by the SPA2 N-terminal domain. At last, the different affinities of SPA1 and SPA2 for cryptochrome 2 are defined by the N-terminal domain of the respective SPA protein. In contrast, both SPA1 and SPA2 similarly interacted with COP1 in light-grown seedlings.ConclusionsOur results show that the distinct activities and protein stabilities of SPA1 and SPA2 in light-grown seedlings are primarily encoded by their N-terminal kinase-like domains. Similarly, the different affinities of SPA1 and SPA2 for cry2 are explained by their respective N-terminal domain. Hence, after a duplication event during evolution, the N-terminal domains of SPA1 and SPA2 underwent subfunctionalization, possibly to allow optimal adaptation of growth and development to a changing light environment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0854-9) contains supplementary material, which is available to authorized users.

Highlights

  • Plants have evolved complex mechanisms to adapt growth and development to the light environment

  • In order to identify the domain(s) responsible for the SPA1- and SPA2specific activities of these SUPPRESSOR OF PHYA-105 (SPA) proteins, we designed three domain swap constructs that encode chimeric SPA proteins with an N-terminal domain, a coiled-coil domain or a WD-repeat domain from SPA1 fused to the remaining domains of SPA2

  • This was expected because SPA1 and SPA2 do not differ in their functions in darkness [15, 29]

Read more

Summary

Introduction

Plants have evolved complex mechanisms to adapt growth and development to the light environment. The COP1/SPA complex is a key repressor of photomorphogenesis in dark-grown Arabidopsis plants and acts as an E3 ubiquitin ligase to ubiquitinate transcription factors involved in the light response. Several classes of photoreceptors evolved that constantly monitor light conditions and allow plants to rapidly respond to changing light conditions These photoreceptors include the red- (R)/far-red- (FR) perceiving phytochromes, blue light (B)-sensing cryptochromes, phototropins and the ZEITLUPE family and the UV-B receptor UVR8 [2,3,4]. Arabidopsis seedlings grown in the dark display elongated hypocotyls, closed cotyledons and an apical hook These etiolation phenotypes require the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) complex. B-activated cryptochrome 1 (cry1) interacts with members of the SPA family to disrupt the interaction between COP1 and SPA proteins, leading to reduced COP1/SPA function and de-etiolation of the plant [8, 9]. A third mechanism involves the light-induced degradation of SPA1 and SPA2 [15, 16]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.