Abstract

These studies examined the functional relationship between rat hepatic mitochondria and associated hexokinase (ATP: d-hexose-6-phosphotransferase, 2.7.1.1) to determine whether the binding of hexokinase to mitochondria might provide a privileged interaction with sites of ATP production. Initial kinetic analysis followed the sequential flow of phosphate through ATP generated by the mitochondria into glucose-6-phosphate catalyzed by the bound hexokinase. Kinetics were compared with an identical bound hexokinase-mitochondrial system using externally supplied ATP. The hexokinase had lower apparent K m values for ATP generated in the mitochondria from supplied ADP than for ATP provided. Respiratory inhibitors blocked both the ADP- and ATP-mediated reactions. Tracer studies further documented that the mitochondrial hexokinase initially and preferentially utilized the internally generated nucleotide. These studies demonstrate that the active site of bound hexokinase is relatively inaccessible to extramitochondrial ATP. They provide evidence that bound hexokinase can sequentially accept mitochondrially generated ATP in a kinetically advantageous way. Finally, they support the assumption that mitochondrial binding of this acceptor enzyme may play a propitious role in cellular energy economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.