Abstract
The functional central limit theorem, or invariance principle, refers to convergence in distribution of centered and rescaled random walks having finite second moments to Brownian motion. This provides a tool for computing asymptotic limits of functionals of rescaled random walks by analyzing the corresponding functional of Brownian motion. The term “invariance principle”refers to the invariance of the distribution of the limit, namely Brownian motion, regardless of the specific random walk increments, with a finite second moment. The proof given here is by a beautiful technique of Skorokhod in which the random walk paths are embedded within the Brownian motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.