Abstract

The Shorthead lamprey Mordacia mordax (Mordaciidae, Agnatha) represents one of the earliest stages in vertebrate evolution. This study investigates the ultrastructural anatomy of the cornea, iris and anterior chamber in the eyes of this species in both the downstream and upstream migrant phases of its protracted lifecycle to assess the morphological and quantitative changes associated with growth, corneal function and vision. Using light and both scanning and transmission electron microscopy, the cornea is found to be divided into dermal and scleral components separated by a mucoid layer. A range of distinguishing corneal features are compared in the two adult phases of the lifecycle including epithelial microprojections, mucus-secreting epithelial cells, the number, thickness, formation and level of branching and anastomosing of collagen lamellae, the type and distribution of vertical sutures, the structure of the mucoid layer and annular ligament and the number and distribution of a large number of basement membranes throughout the cornea. Significant differences are found between the two phases, which are thought to reflect adaptations to the variable environmental conditions encountered throughout this species' lifecycle. The study provides insights into the evolutionary pressures on extant representatives of the earliest stages in the evolution of the vertebrate eye. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call