Abstract

Soil micronutrient availability, including zinc (Zn), is a limiting factor for crop yield. Arbuscular mycorrhizal (AM) fungi can improve host plant growth and nutrition through the mycorrhizal pathway of nutrient uptake. Although the physiology of Zn uptake through the mycorrhizal pathway is well established, the identity of the related molecular components are unknown. Here, RNA-seq analysis was used to identify genes differentially-regulated by AM colonization and soil Zn concentration in roots of Medicago truncatula. The putative Zn transporter gene MtZIP14 was markedly up-regulated in M.truncatula roots when colonized by Rhizophagus irregularis. MtZIP14 restored yeast growth under low Zn availability. Loss-of-function mutant plants (mtzip14) had reduced shoot biomass compared to the wild-type when colonized by AM fungi and grown under low and sufficient soil Zn concentration; at high soil Zn concentration, there were no genotypic differences in shoot biomass. The vesicular and arbuscular colonization of roots was lower in the mtzip14 plants regardless of soil Zn concentration. We propose that MtZIP14 is linked to AM colonization in M. truncatula plants, with the possibility that MtZIP14 function with AM colonization is linked to plant Zn nutrition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.