Abstract

The actions of the dorsal interosseous, volar interosseous, and lumbrical muscles were investigated using applied electrical stimulation and recording the moments that were generated across the metacarpophalangeal joint in flexion/extension and abduction/adduction, the proximal interphalangeal joint in flexion/extension, and the distal interphalangeal joint in flexion/extension. These measurements were made isometrically at various joint angles and levels of stimulation with both able bodied subjects and persons who had sustained tetraplegia. It was determined that the dorsal interossei, including the first, were strong abductors of the fingers and generated a significant moment in metacarpophalangeal (MP) joint flexion and interphalangeal (IP) joint extension. The volar interossei were the primary adductors of the fingers, as well as providing a significant moment in MP joint flexion and IP joint extension. The lumbrical muscles were found to be MP joint flexors and IP joint extensors, although the moments that were generated were on average 70% lower than the interossei. The role of the lumbricals as finger abductors or adductors could not be determined from the data. This information on the actions and moment generating capabilities of the intrinsic muscles led to the incorporation of the interossei into electrically induced hand grasp provided by an implanted neuroprosthesis. The evaluation of the intrinsic muscles in the neuroprosthesis was accomplished by recording the moment generating capabilities of these muscles across each of the joints of the finger. These muscles were capable of generating moments that were 80-90% of the average attained by the able bodied subjects, and have provided a substantial improvement to the electrically induced hand grasp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.