Abstract

This review aims to summarize the research focused upon the functions of nuclear hormone receptor 4A (NR4A) in the human reproductive system. The research questions addressed are to decipher what role the NR4A subfamily plays in the regulation of the human reproductive system and effects upon fertility issues through regulation of the expression of the NR4A subfamily. The electronic database PubMed was searched for studies published before November 2021. Keywords included "NR4A," "trophoblast," "decidualization," "folliculogenesis," "estrogen," "pregnancy," "Leydig cells," "fertility," and "reproductive." Relevant references from retrieved manuscripts and review articles were also searched manually. NR4A subfamily are involved in trophoblast differentiation, endometrial decidualization, embryo adhesion, secretion of related hormones, and regulation of spontaneous term labor. Besides, many studies have provided strong evidence that they play critical roles in spermatogenesis. Furthermore, Multiple mechanisms can affect the expression of NR4As. Broadly, NR4A family receptors affect the human reproductive system in multiple ways. Further research is needed to specifically dissect the functions and regulatory mechanisms of these receptors and their pharmaceutical antagonists and agonists. The connection between the NR4A subfamily and a variety of reproductive disorders needs to be proven experimentally such that further examination of human tissue is required to assess the role of these receptors in human reproductive diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.