Abstract

In recent decades, magnetic nanoparticles modified with biocompatible polymers have been recognized as a suitable tool for treating breast cancer. The aim of this research was to evaluate the function of chitosan/agarose-functionalized Fe2 O3 nanoparticles on the MCF-7 breast cancer cell line and the expression of BCL2 and BAX genes. Free Fe2 O3 nanoparticles were prepared by hydrothermal method. FTIR, XRD, SEM, DLS, VSM, and zeta potential analyses determined the size and morphological characteristics of the synthesized nanoparticles. The effect of Fe2 O3 free nanoparticles and formulated Fe2 O3 nanoparticles on induction of apoptosis was studied by double-dye Annexin V-FITC and PI. Also, the gene expression results using the PCR method displayed that Fe2 O3 formulated nanoparticles induced BAX apoptosis by increasing the anti-apoptotic gene expression and decreasing the expression of pro-apoptotic gene BCL2, so the cell progresses to planned cell death. In addition, the results showed that the BAX/BCL2 ratio decreased significantly after treatment of MCF-7 cells with free Fe2 O3 nanoparticles, and the BAX/BCL2 ratio for Fe2 O3 formulated nanoparticles increased significantly. Also, to evaluate cell migration, the scratch test was performed, which showed a decrease in motility of MCF-7 cancer cells treated with Fe2 O3 nanoparticles formulated with chitosan/agarose at concentrations of 10, 50, 100, and 200 μg/ml.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.