Abstract
In recent years, the Douglas-Rachford splitting method has been shown to be effective at solving many non-convex optimization problems. In this paper we present a local convergence analysis for non-convex feasibility problems and show that both finite termination and local linear convergence are obtained. For a generalization of the Sudoku puzzle, we prove that the local linear rate of convergence of Douglas-Rachford is exactly $\frac{\sqrt{5}}{5}$ and independent of puzzle size. For the $s$-queens problem we prove that Douglas-Rachford converges after a finite number of iterations. Numerical results on solving Sudoku puzzles and $s$-queens puzzles are provided to support our theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.