Abstract

Stefan Nagy, an assistant professor in the Kahlert School of Computing at the University of Utah, takes us on a tour of recent research in software fuzzing, or the systematic testing of programs via the generation of novel or unexpected inputs. The first paper he discusses extends the state of the art in coverage-guided fuzzing with the semantic notion of "likely invariants," inferred via techniques from property-based testing. The second explores encoding domain-specific knowledge about certain bug classes into test-case generation. His last selection takes us through the looking glass, randomly generating entire C programs and using differential analysis to compare traces of optimized and unoptimized executions, in order to find bugs in the compilers themselves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.