Abstract

In this paper we show a version of the Fueter mapping theorem that can be stated in integral form based on the Cauchy formulas for slice monogenic (or slice regular) functions. More precisely, given a holomorphic function f of a paravector variable, we generate a monogenic function by an integral transform whose kernel is particularly simple. This procedure allows us to define a functional calculus for n-tuples of commuting operators (called ℱ-functional calculus) based on a new notion of spectrum, called ℱ-spectrum, for the n-tuples of operators. Analogous results are shown for the quaternionic version of the theory and for the related ℱ-functional calculus. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.