Abstract

With ever-growing energy demands and increasing greenhouse gas (GHG) emissions, carbon emission reduction has attracted worldwide attention. This article establishes a bottom-up method using regional data from 2010 to 2020 to quantify the carbon reduction effects of new energy vehicles (NEVs) in the fuel cycle. From this, a generalized Bass model with outstanding performance was created (with a goodness-of-fit of 99.7%) to forecast CO2 emission reduction potential in 2030 and 2050. The results are as follows: (1) there are regional differences in the fuel cycle carbon reduction effects of NEVs in all six regions, with the Central China power grid having the strongest ability to reduce emissions, while the Northeast and Northwest grids have relatively low carbon reduction effects. (2) Battery electric vehicles (BEVs) have the strongest CO2 emission reduction effect, while fuel cell vehicles (FCVs) have the most potential. (3) Under the baseline scenario, the carbon reduction of NEVs will be 2992 million tons in 2030 and reach 11,559 million tons in 2050, which is far from carbon neutrality. Further, policy implications, including the tailoring of policies to specific regions and upgrading the energy mix, are proposed to reduce further carbon emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call