Abstract

We sequenced the ftsZ gene region of the halophilic archaeon Haloferax mediterranei and mapped the transcription start sites for the ftsZ gene. The gene encoded a 363-amino-acid long FtsZ protein with a predicted molecular mass of 38 kDa and an isoelectric point of 4.2. A high level of similarity to the FtsZ protein of Haloferax volcanii was apparent, with 97 and 90% identity at the amino acid and nucleotide levels, respectively. Structural conservation at the protein level was shown by visualization of the FtsZ ring structure in H. mediterranei cells using an antiserum raised against FtsZ of H. volcanii. FtsZ rings were observed in cells in different stages of division, including cells with pleomorphic shapes and cells that appeared to be undergoing asymmetric division. Cells were also observed that displayed constriction-like invaginations in the absence of an FtsZ ring, indicating that morphological data are not sufficient to determine whether pleomorphic Haloferax cells are undergoing cell division. Both the upstream and downstream gene order in the ftsZ region was found to be conserved within the genus Haloferax. Furthermore, the downstream gene order, which includes the secE and nusG genes, is conserved in almost all euryarchaea sequenced to date. The secE and nusG genes are likely to be transcriptionally and translationally coupled in Haloferax, and this co-expression may have been a selective force that has contributed to keeping the gene cluster intact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.