Abstract

Single-hop wavelength-division-multiplexed (WDM) networks with a central passive star coupler (PSC), as well as single-hop networks with a central arrayed-waveguide grating (AWG) and a single transceiver at each node, have been extensively studied as solutions for the quickly increasing amounts of unicast and multicast traffic in the metropolitan area. The main bottlenecks of these networks are the lack of spatial wavelength reuse in the studied PSC-based networks and the single transceiver in the studied AWG-based metro WDM networks. This paper describes the development and evaluation of the FT/sup /spl Lambda//-FR/sup /spl Lambda// AWG network, which is based on a central AWG and has arrays of fixed-tuned transmitters and receivers at each node. Transceiver arrays are a mature technology, making the proposed network practical. In addition, the transmitter arrays allow for high-speed signaling over the AWG while the receiver arrays relieve the receiver bottleneck arising from multicasting in conjunction with spatial wavelength reuse on the AWG. The results from probabilistic analysis and simulation reported here indicate that the FT/sup /spl Lambda//-FR/sup /spl Lambda// AWG network gives particularly good throughput-delay performance for a mix of unicast and multicast traffic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.