Abstract

In the frozen orbital approximation (FOA), the influence of reorganization on correlation contributions to ionization energies is neglected. It is particularly useful in calculations for large molecules because of the advantage that only one integral transformation is required for the calculation of all ionic states. In connection with the concept of independent orbital correlation contributions, the dimensions of the CI matrices can be drastically reduced. The method is applied to the calculation of the valence ionization energies of propane, and compared to more rigorous ab initio results and a recent calculation in which inner valence shell contributions to electron correlation are neglected. The ordering of the first three ionizations in the photoelectron spectrum of propane, which has not been definitively assigned, is shown to be 2B1(2b1),2A1(6a1) and 2B2(4b2), in agreement with Koopmans' theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.