Abstract
We consider two-dimensional solitary water waves on a shear flow with an arbitrary distribution of vorticity. Assuming that the horizontal velocity in the fluid never exceeds the wave speed and that the free surface lies everywhere above its asymptotic level, we give a very simple proof that a suitably defined Froude number $F$ must be strictly greater than the critical value $F=1$. We also prove a related upper bound on $F$, and hence on the amplitude, under more restrictive assumptions on the vorticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.