Abstract

We mapped the motor areas of the prosimian Galago crassicaudatus using intracortical electrical microstimulation and morphological and histochemical (cytochrome oxidase) techniques. Stimulation data showed that on the brain convexity there is an area (area Frontalis posterior, F post.) from which movements could be evoked at low threshold (< 10 μA. This area is somatotopically organized, with the leg represented medially, the arm centrally and the face and mouth laterally. Proximal and distal movements are not segregated. Most of the evoked movements, even at threshold, consist of movements involving two or more joints. F post. is characterized by a three-band cytochrome oxidase activity pattern. It has an agranular structure, but it lacks pyramidal cells that are larger than those observed in other areas. In front of F post. there is an area histochemically similar to it, Frontalis intermedialis (F int.). This area consists of two cytoarchitectonic divisions: an agranular division (F int. pars caudalis) and a disgranular division (F int. pars rostralis). The excitability threshold of F int. is relatively high (10 to 30 μA). Eye, ear and neck movements are elicited from its lateral part, whereas trunk movements associated with limb movements are elicited from its medial part. Caudal to F post., there is another region from which movements can be evoked with currents between 10 to 30 μA. This region has the same medio-lateral somatotopic arrangement of F post. Typically, single joint movements are elicited from it. Proximal and distal movements are not segregated. In spite of its homogeneity in terms of motor response, the posterior excitable region is formed by two anatomically separate areas: anterior somatic area (S ant.) and posterior somatic area (S post.). S ant. has a typical koniocortex structure, whereas S post. resembles the parakoniocortex as defined by Sanides ( J. Hirnforsch., 9 (1967) 225–252). Histochemically both areas are made up of four longitudinal stripes differing for enzymatic activity. The three superfical stripes tend to merge together and are sharply separated from a deeply located, light stripe. This stripe is homogeneous in S ant., whilst its central part shows an increase in activity in S post. The possible homologies between the motor and somatic areas of the galago and monkey as well as their role in movement control are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call