Abstract

Self-similar plane solutions for the inertial stage of gravity currents are related to the initial parameters and a coefficient that is determined by the boundary condition at the front. Different relations have been proposed for the boundary condition in terms of a Froude number at the front, none of which have a sound theoretical or experimental basis. This paper focuses on considerations of the appropriate Froude number based on results of lock-exchange experiments in which extended inertial gravity currents are generated in a rectangular cross-section channel. We use ‘top-hat’ vertical density profiles of the currents to obtain an ‘equivalent’ depth, defined by profiles having the same buoyancy at every position as the real profiles. As in previous work, our experimental results show that in the initial constant-velocity phase the Froude number can be defined in terms of the lock depth. However, as the current enters the similarity phase when the initial release conditions are no longer relevant, we find that the Froude number is more appropriately defined in terms of the maximum height of the head. Strictly speaking, the self-similar solution to the shallow-water equations requires a front condition that uses the height at the rear of the head. We find that this rear Froude number is not constant and is a function of the head Reynolds number over the range 400–4500.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.