Abstract
Let R be the homogeneous coordinate ring of the Grassmannian G=Gr(2,n) defined over an algebraically closed field k of characteristic p≥max{n−2,3}. In this paper we give a description of the decomposition of R, considered as graded Rpr-module, for r≥2. This is a companion paper to [16], where the case r=1 was treated, and taken together, our results imply that R has finite F-representation type (FFRT). Though it is expected that all rings of invariants for reductive groups have FFRT, ours is the first non-trivial example of such a ring for a group which is not linearly reductive. As a corollary, we show that the ring of differential operators Dk(R) is simple, that G has global finite F-representation type (GFFRT) and that R provides a noncommutative resolution for Rpr.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.