Abstract
Let ${\mathcal M}$ be a smooth compact manifold whose boundary is the total space of a fibration ${\mathcal N}\to {\mathcal Y}$ with compact fibers, let $E\to{\mathcal M}$ be a vector bundle. Let \begin{equation} A:C_c^\infty( \overset{\,\,\circ} {\mathcal M};E)\subset x^{-\nu} L^2_b({\mathcal M};E)\to x^{-\nu} L^2_b({\mathcal M};E) $ \tag*{(†)} \end{equation} be a second order elliptic semibounded wedge operator. Under certain mild natural conditions on the indicial and normal families of $A$, the trace bundle of $A$ relative to $\nu$ splits as a direct sum ${\mathscr T}={\mathscr T}_F\oplus{\mathscr T}_{aF}$ and there is a natural map ${\mathfrak P} :C^\infty({\mathcal Y};{\mathscr T}_F)\to C^\infty( \overset{\,\,\circ} {\mathcal M};E)$ such that $C^\infty_{{\mathscr T}_F}({\mathcal M};E)={\mathfrak P} (C^\infty({\mathcal Y};{\mathscr T}_F)) +\dot C^\infty({\mathcal M};E)\subset {\mathcal D}_{\max}(A)$. It is shown that the closure of $A$ when given the domain $C^\infty_{{\mathscr T}_F}({\mathcal M};E)$ is the Friedrichs extension of (†) and that this extension is a Fredholm operator with compact resolvent. Also given are theorems pertaining the structure of the domain of the extension which completely characterize the regularity of its elements at the boundary.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.