Abstract
The paper presents a technique for solving the plane frictionless contact problems in the presence of gravity and/or uniform clamping pressure. The technique is described by applying it to a simple problem of lifting of an elastic layer lying on a horizontal, rigid, frictionless subspace by means of a concentrated vertical load. First, the problem of continuous contact is considered and the critical value of the load corresponding to the initiation of interface separation is determined. Then the mixed boundary-value problem of discontinuous contact is formulated in terms of a singular integral equation by closely following a technique developed for crack problems. The numerical results include the contact stress distribution and the length of separation region. One of the main conclusions of the study is that neither the separation length nor the contact stresses are dependent on the elastic constants of the layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.