Abstract

Measurements are reported of the friction of diamond styli polished to a spherical tip sliding over a flat polished diamond surface. Particular attention was paid to maintaining standard conditions during the experiments, particularly the crystallographic orientations of the styli, the flat surface, and the directions of sliding, as well as the conditions of polish. The coefficient of friction was determined for sliding on both (001) and (011) faces, in different sliding directions, and for a range of loads and tip radii. The value of the friction and its variation with the direction of sliding depend quite strongly on the magnitude of the load and the radius of the stylus. However, the present results show that styli of different radii give quite similar friction when sliding under the same mean contact pressure. Hence, apparent discrepancies between previous measurements of the friction may be related to different regimes of pressure in the different experiments. When the stylus slides in the direction of easy abrasion of the flat the coefficient of friction passes through a pronounced minimum value as the contact pressure is increased. This behaviour suggests that at least two mechanisms contribute to the friction. A discussion based on the unusual topography of polished diamond surfaces, shows that the forces and energy losses associated with the friction may arise via at least three different mechanisms. The main features of the present results may be accounted for by two of these mechanisms in which surface asperities either ride over each other or push each other aside. (The third mechansim involving only fracture of the asperities appears to make no significant contribution.)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call