Abstract

BackgroundWhile both preclinical and clinical studies suggest that the frequency of growing skeletal metastases is elevated in individuals with higher bone turnover, it is unclear whether this is a result of increased numbers of tumour cells arriving in active sites or of higher numbers of tumour cells being induced to divide by the bone micro-environment. Here we have investigated how the differences in bone turnover affect seeding of tumour cells and/or development of overt osteolytic bone metastasis using in vivo models of hormone-independent breast and prostate cancer.MethodsCohorts of 6 (young) and 16 (mature)-week old BALB/c nude mice were culled 1, 7 and 21 days after received intracardiac injection of luciferase expressing human prostate (PC3) or breast cancer (MDA-MB-231) cell lines labelled with a fluorescent cell membrane dye (Vybrant DiD). The presence of growing bone metastases was determined by bioluminescence using an in vivo imaging system (IVIS) and followed by anatomical confirmation of tumour metastatic sites post mortem, while the presence of individual fluorescently labelled tumour cells was evaluated using two-photon microscopy ex vivo. The bone remodelling activities were compared between young and mature naïve mice (both male and female) using micro-CT analysis, ELISA and bone histomorphometry.ResultsBoth prostate and breast cancer cells generated higher numbers of overt skeletal lesions in young mice (~80%) than in mature mice (~20%). Although mature mice presented with fewer overt bone metastases, the number of tumour cells arriving/colonizing in the tibias was comparable between young and mature animals. Young naïve mice had lower bone volume but higher bone formation and resorption activities compared to mature animals.ConclusionsOur studies suggest that higher frequencies of growing osteolytic skeletal metastases in these models are linked to increased bone turnover and not to the initial number of tumour cells entering the bone microenvironment.

Highlights

  • While both preclinical and clinical studies suggest that the frequency of growing skeletal metastases is elevated in individuals with higher bone turnover, it is unclear whether this is a result of increased numbers of tumour cells arriving in active sites or of higher numbers of tumour cells being induced to divide by the bone micro-environment

  • Overt tumours were monitored up to 8 weeks post injection using an in vivo imaging system (IVIS, PerkinElmer, Cambridge, UK) and the tumour burden was measured based on radiance of luminescence using the Living Image software (PerkinElmer), followed by anatomical confirmation of tumour metastatic sites post mortem

  • The skeletal tumours clearly caused osteolytic bone lesions in both young and old mice, as shown in the 3D micro-CT scanning image of a tumour bearing femur of young mice associated with bone destruction (Fig. 1e). This was confirmed by significant decrease in trabecular bone content (BV/TV) compared to non-tumour bearing femurs (13.6 ± 0.8 vs 3.0 ± 0.9, p < 0.0001)(Fig. 1f )

Read more

Summary

Introduction

While both preclinical and clinical studies suggest that the frequency of growing skeletal metastases is elevated in individuals with higher bone turnover, it is unclear whether this is a result of increased numbers of tumour cells arriving in active sites or of higher numbers of tumour cells being induced to divide by the bone micro-environment. It has been suggested that prostate and breast cancers contain a small percentage (

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call