Abstract

Wheat × pearl millet crosses were studied to determine whether fertilization occurred and whether any resulting hybrids were karyotypically stable. Crosses between the hexaploid wheat genotype 'Chinese Spring' (kr1, kr2) and the pearl millet genotype 'Tift 23BE' gave fertilization in 28.6% of the 220 florets pollinated. Chromosome counts from zygotes at metaphase confirmed the hybrid origin of the embryos. Three had the expected F1 combination of 21 wheat and 7 pearl millet chromosomes and a fourth had 21 wheat and 14 pearl millet chromosomes. The expected F1 chromosome complement was also found in a primary endosperm mitosis. The hybrid embryos were karyotypically unstable and probably lost all the pearl millet chromosomes in the first four cell division cycles. Similar results were obtained using two other wheat genotypes. Crosses between the hexaploid wheat genotype 'Highbury', which differs from 'Chinese Spring' in having alleles for reduced crossability with rye and Hordeum bulbosum at the Kr1 and Kr2 loci, and 'Tift 23BE' gave fertilization in 32% of analyzed florets. This was not significantly different from the frequency found in 'Chinese Spring', indicating that 'Tift 23BE' was insensitive to the action of the Kr genes. Crosses between the tetraploid wheat genotype 'Kubanka' and 'Tift 23BE' gave fertilization in 48% of florets. The potential of pearl millet for wheat haploid production is discussed.Key words: wheat, pearl millet, wide hybridization, chromosome elimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.