Abstract

The first part of this paper reviews the theory of the calculation of the frequency-dependent dielectric properties (i.e., conductivity and dielectric constant) of ionic solutions from computer simulations. Based on a 2.2-ns molecular dynamics simulation, the second part presents a detailed analysis of the various contributions to the frequency-dependent conductivity of a saturated solution of ZnBr2 in water. We find evidence for two separate relaxation channels in the frequency-dependent conductivity, and a very low value for the static (i.e., zero frequency) conductivity, which is consistent with the high degree of ion association and the prevalence of electrically neutral ion clusters that we observe in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.