Abstract

Voltammetric analyses show that low (100-500 nM) doses of nicotine regulate striatal dopamine by inhibiting release evoked by a single stimulation to a greater extent than release evoked by high frequency stimulations. This frequency-dependent inhibition is because of nicotine desensitizing heteromeric β2 subunit-containing nicotinic acetylcholine receptor (nAChR) subtypes. Surprisingly, a high dose of nicotine (2 μM; capable of interacting with additional nAChR subtypes) produced an inhibition of dopamine evoked by high frequency stimulation, an effect that was not seen with the low dose of nicotine or the β2 antagonist, dihydro-β-erythroidine hydrobromide. This inhibition was replicated by application of α7 nAChR antagonists methyllcaconitine citrate or α-bungarotoxin in conjunction with the low dose of nicotine or dihydro-β-erythroidine hydrobromide. Blocking α7 receptor function alone produced a modest increase in dopamine evoked by single pulse stimulation while not affecting dopamine evoked by high frequency stimulation. The antagonist results were mimicked using selective α7 agonists PHA 543613 and PNU 282987. The frequency dependence of the low dose nicotine inhibition therefore requires functional α7 nAChRs, and may arise from differing levels of endogenous acetylcholine evoked by the stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.