Abstract
We devise a new geometric approach to study the propagation of disturbance – compactly supported data – in reaction–diffusion equations. The method builds a bridge between the propagation of disturbance and of almost planar solutions. It applies to very general reaction–diffusion equations. The main consequences we derive in this paper are: a new proof of the classical Freidlin–Gärtner formula for the asymptotic speed of spreading for periodic Fisher–KPP equations; extension of the formula to the monostable, combustion and bistable cases; existence of the asymptotic speed of spreading for equations with almost periodic temporal dependence; derivation of multi-tiered propagation for multistable equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.