Abstract

The free solution mobility of a high-molecular-weight DNA, linear pUC19, and a 20-bp oligomer called dsA5 have been studied as a function of Tris-acetate-EDTA (TAE) buffer concentration, with and without added NaCl. The two DNAs migrate as separate peaks during capillary electrophoresis, because the mobility of linear pUC19 is higher than that of the 20-bp oligomer. In TAE buffers ranging from 10-400 mM in concentration, the migration times and peak areas of the two DNAs are independent of whether they are electrophoresed separately or in mixtures, indicating that DNA-DNA and DNA-buffer interactions are absent in these solutions. The migration times of the two DNAs vary and the peak areas are not additive when the TAE buffer concentration is reduced to 5 mM or below, indicating that DNA-DNA and DNA-buffer interactions are occurring at very low TAE buffer concentrations. The mobilities of linear pUC19 and dsA5 decrease slowly with increasing conductivity or ionic strength when the conductivity is increased by increasing the TAE buffer concentration. When the Tris buffer concentration is held constant and the conductivity is increased by adding various concentrations of NaCl to the solution, the mobilities of linear pUC19 and dsA5 first increase slightly, then become independent of solution conductivity (or ionic strength), and finally decrease when the NaCl concentration is increased above approximately 50 mM. The mobility variations observed in the various TAE and TAE-NaCl solutions are described qualitatively by Manning's theory, although quantitative agreement is not achieved. The free solution mobilities of single-stranded pUC19 and two 20-base oligonucleotides have also been measured. The free solution mobility of single-stranded pUC19 is approximately 15% lower than that of native pUC19, in agreement with other results in the literature. Somewhat surprisingly, the mobilities of the single- and double-stranded 20-mers are equal to each other in TAE buffers with and without added NaCl.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.