Abstract

Reactive oxygen species (ROS), although implicated in morphological birth defects caused by ethanol (EtOH) during pregnancy, have not been directly linked to its behavioral deficits. To determine this, a pathogenic oxidative DNA lesion was measured in fetal brain, and a passive avoidance learning test was assessed postnatally in the progeny of CD-1 mice treated once on gestational day 17 with 4g/kg EtOH or its saline vehicle, with or without pretreatment with the free radical spin trapping agent α-phenyl-N-tert-butylnitrone (PBN; 40mg/kg). EtOH-exposed CD-1 progeny, unlike C57BL/6 progeny, had no morphological birth defects, but exhibited a learning deficit at 12 weeks of age (p<0.001), which continued to 16 weeks in males (p<0.01). Peak blood EtOH concentrations were 2.5-fold higher in C57BL/6 mice compared to CD-1 mice given the same dose. PBN pretreatment of CD-1 dams blocked both EtOH-initiated DNA oxidation in fetal brain (p<0.05) and postnatal learning deficits (p<0.01), providing the first direct evidence for ROS in the mechanism of EtOH-initiated neurodevelopmental deficits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.