Abstract

Tea is one of the most popular beverages in the world. Camellia sinensis tea (CST) or green tea is widely regarded as a potent antioxidant. In Thailand, Pluchea indica (L.) Less. tea (PIT) has been commercially available as a health-promoting drink. This study focused on free radical scavenging activities of PIT, and its ability to protect isolated human low-density lipoproteins (LDL) from oxidation by chemical agents. A preliminary study to investigate the antioxidant nature of PIT was undertaken. These included common antioxidant assays involving 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), hypochlorous acid (HOCl), and its potential to scavenge peroxynitrite. In separated experiments, isolated human LDL was challenged with either 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), copper (Cu2+), or 3-Morpholinosydnonimine hydrochloride (SIN-1) to induce LDL oxidation. PIT exhibited antioxidant activity in all test systems and performed significantly better than CST in both DPPH (P < 0.05; IC50PIT = 245.85 ± 15.83 and CST = 315.41 ± 24.18 μg/ml) and peroxynitrite scavenging assays. PIT at 75 μg/ml almost fully prevented the peroxynitrite over a 5 h period. Moreover, it displayed similar properties to CST during the antioxidation of isolated human LDL using AAPH, Cu2+, SIN-1, and hypochlorous acid scavenging assays. However, it revealed a significantly lower ABTS scavenging activity than CST (P < 0.05; IC50PIT = 30.47 ± 2.20 and CST = 21.59 ± 0.67 μg/ml). The main constituents of the PIT were identified using LC-MS/MS. It contained 4-O-caffeoylquinic acid (4-CQ), 5-O-caffeoylquinic acid (5-CQ), 3,4-O-dicaffeoylquinic acid (3,4-CQ), 3,5-O-dicaffeoylquinic acid (3,5-CQ), and 4,5-O-dicaffeoylquinic acid (4,5-CQ). In conclusion, caffeoyl derivatives in PIT could play an important role in potent antioxidant properties. So, it may be further developed to be antioxidant beverages for preventing atherosclerosis and cardiovascular diseases associated with oxidative stress.

Highlights

  • Oxidative stress is defined as the imbalance between the production of free radicals and defense mechanisms, which are natural physiological processes in biological systems [1]

  • Oxidized low-density lipoproteins (LDL) is BioMed Research International thought to have a vital role in the etiology of atherosclerosis, which has a profound effect on cardiovascular function [7,8,9]

  • The result indicated that Pluchea indica (L.) Less. tea (PIT) generated significantly stronger antioxidant capacity than Camellia sinensis tea (CST) at a concentration of 75 μg/ml to 300 μg/ml CST (P < 0:05) (Figure 1)

Read more

Summary

Introduction

Oxidative stress is defined as the imbalance between the production of free radicals and defense mechanisms, which are natural physiological processes in biological systems [1]. The excesses of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) is the major causes of oxidative stress that is associated with the development of chronic and degenerative diseases such as cancer, arthritis, aging, autoimmune disorders, cardiovascular, and neurodegenerative diseases [2,3,4,5]. Oxidative stress may modify the structure and function of certain biomolecules, including proteins, lipids, and DNA [6]. Oxidative stress may result in the oxidation of human LDL. LDL oxidation may result in lipid peroxidation or the direct oxidation of apolipoprotein. Oxidized LDL is BioMed Research International thought to have a vital role in the etiology of atherosclerosis, which has a profound effect on cardiovascular function [7,8,9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.