Abstract

In the electromechanical theory of nerve stimulation, the nerve impulse consists of a traveling region of solid membrane in a liquid environment. Therefore, the free energy necessary to stimulate a pulse is directly related to the free energy difference necessary to induce a phase transition in the nerve membrane. It is a function of temperature and pressure, and it is sensitively dependent on the presence of anesthetics which lower melting transitions. We investigate the free energy difference of solid and liquid membrane phases under the influence of anesthetics. We calculate stimulus-response curves of electromechanical pulses and compare them to measured stimulus-response profiles in lobster and earthworm axons. We also compare them to stimulus-response experiments on human median nerve and frog sciatic nerve published in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call