Abstract

Frank and Lieb gave a new, rearrangement-free, proof of the sharp Hardy–Littlewood–Sobolev inequalities by exploiting their conformal covariance. Using this they gave new proofs of sharp Sobolev inequalities for the embeddings [Formula: see text]. We show that their argument gives a direct proof of the latter inequalities without passing through Hardy–Littlewood–Sobolev inequalities, and, moreover, a new proof of a sharp fully nonlinear Sobolev inequality involving the [Formula: see text]-curvature. Our argument relies on nice commutator identities deduced using the Fefferman–Graham ambient metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.