Abstract
Liver glycogen is a highly branched glucose polymer found as β particles (~20 nm in diameter), which can bind together into larger composite α particles. Hepatic α particles have been shown to be structurally fragile (breaking up into smaller particles in certain solvents) in mouse models of diabetes; if occurring in vivo, the resulting small glycogen particles could exacerbate the poor blood-sugar homeostasis characteristic of the disease. Here we tested if this α-particle fragility also occurred in liver glycogen obtained from humans with diabetes. It was found that liver glycogen from diabetic humans was indeed more fragile than from non-diabetic humans, which was also seen in the mouse experiments we ran in parallel. Proteomic analysis revealed three candidate proteins from differentially expressed glycogen proteins (Diabetes/ Non-diabetes) in both human and mouse groups. Identifying these proteins may give clues to the binding mechanism that holds together α particles together, which, being different in diabetic glycogen, is relevant to diabetes prevention and management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.