Abstract

Large gas reserves have been found in the Permian platform margin of the Kaijiang-Liangping area of the Sichuan Basin in SW China. They are assumed to be a widely developed reef–shoal reservoir. However, the tight matrix reservoir cannot support high gas production using conventional development technology at deep subsurface. In this contribution, we analyze the fractured reservoirs along the strike-slip fault zones using the compiled data of cores, well logging, and production data, and provide a seismic description. It was shown that the fractures and their dissolution developed along the strike-slip fault zones. The porosity and permeability of the fractured reservoir could increase by more than one and 1–2 orders of magnitude, respectively. The seismic anisotropic energy found in the steerable pyramid process suggests that fractured reservoirs have a strong heterogeneity, with a localized fault damage zone. This fracturing has both positive and negative effects, showing varied reservoir parameters in the fault damage zone. The development pattern should adopt a non-uniform well pattern, in order to target the localized “sweet spot” of the fractures in these deep tight matrix reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call