Abstract
Fracture of the poly(methyl methacrylate) bone cement mantle can lead to the loosening and ultimate failure of cemented total joint prostheses. The addition of fibers to the bone cement increases fracture resistance and may reduce, if not eliminate, in vivo fracturing. This study discusses the effect of incorporating titanium (Ti) fibers on fracture toughness. Essential characteristics of the composite bone cement included a homogeneous and uniform fiber distribution, and a minimal increase in apparent viscosity of the polymerizing cement. Ti fiber contents of 1%, 2%, and 5% by volume increased the fracture toughness over non-reinforced bone cement by up to 56%. Bone cements of two different viscosities were used as matrix material, but when reinforced with the same fiber type and content, they showed no difference in fracture toughness. Four different fiber aspect ratios (68, 125, 227, 417) were tested. At 5% fiber content, there was no statistically significant dependence of fracture toughness on fiber aspect ratio. Scanning electron microscopy revealed important toughening mechanisms such as fiber/matrix debonding, local fracture path alteration, and ductile fiber deformation and fracture. Fiber fracture was evidence that the critical fiber length was exceeded. The surfaces of the Ti fibers were rough and irregular, indicating that a high degree of mechanical interlock between matrix and fiber was likely. The energy absorption contribution of plastic deformation and ductile fracture is absent in brittle fibers, like carbon, but is a distinction of the Ti fibers used in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.