Abstract

Triply periodic minimal surface (TPMS) lattices have recently been shown to exhibit extraordinarily low densities and multi-functionalities. Nevertheless, the dependence of their fracture toughness KIc on relative density ρ¯, unit cell size l and the number of unit cells ahead of the crack tip suggest a lack of understanding of the governing parameters. This also extends to the adequacy of using the current conventional fracture testing protocols. Therefore, the objective of this work is threefold: (i) extract the minimum Schwarz Primitive unit cells for accurate toughness measurement, (ii) estimate KIc of polylactic acid Schwarz Primitive TPMS applying linear elastic fracture mechanics (LEFM) conditions, (iii) investigate the effect of relative density ρ¯ and unit cell size l on the fracture toughness. With 18 cells along the specimen width, KIc is shown to increase linearly with ρ¯ and with the square root of l. Outcomes from this work is aimed toward understanding the damage tolerance of TPMS lattices, and hence the reliability of such new emerging lightweight materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.