Abstract

The fracture toughness of medium density fiberboard (MDF) as a function of crack length ( R curve) was measured. Fracture toughness was determined from force–displacement and crack length data using a new energy analysis procedure that avoids the scatter of prior discrete analysis methods. Because crack lengths were difficult to observe, they were measured using digital image correlation (DIC). The R curves for two different densities of MDF, two thicknesses, and for both in-plane and through-the-thickness cracks all increased linearly with crack length. The increase was interpreted as the development of a fiber-bridging process zone. Numerical modeling methods were used to determine the cohesive stress of the fiber-bridging zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.