Abstract

Commercially available molybdenum and oxide dispersion strengthened (ODS) molybdenum produced by powder metallurgy (PM) methods were subjected to tensile testing, fracture toughness testing, and examination of the toughening mechanism. Both PM and ODS molybdenum have an equiaxed grain size that is larger in scale than comparable wrought products. This results in lower tensile strength and a higher tensile ductile-to-brittle transition temperature (DBTT) for PM and ODS molybdenum compared to wrought product forms. Although the grain size for PM molybdenum is large and the oxygen content is relatively high, both attributes tending to embrittle molybdenum, the transition temperature and fracture toughness values are comparable to those observed for wrought molybdenum. Crack initiation at grain boundaries and the center of grains where pores are present were observed to leave ligaments for the PM molybdenum that are similar in scale to those observed for wrought molybdenum. This is a similar toughening mechanism to the ductile laminate mechanism observed for wrought molybdenum. The larger oxide particle size for PM ODS molybdenum produces larger cracks that result in lower fracture toughness values and a higher DBTT in comparison to PM molybdenum. The impact of the grain size, grain shape, and oxide particles on the toughening mechanism and resulting properties is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call