Abstract

The fracture properties of two glass polyalkenoate cements based on a short chain-length and on a long chain-length poly (acrylic acid) have been studied as a function of the cement age. The stress intensity factor, K I, increases with cement age for both cements. The un-notched fracture strength σf increases with cement age, largely as a result of an increase in the Young's modulus accompanying crosslinking of the polyacrylate chains by metallic ions. The toughness G I remains approximately constant for the short chain-length cement, but reduces with cement age for the long chain-length cement. Analysis of the toughness data using a chain pull-out model leads to the conclusion that chains distant from the fracture plane are involved in fracture, and that the number of chains that take part in chain pull-out decreases as the crack opening displacement reduces with cement age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.