Abstract

In order to contribute towards alloy design and therefore an improvement in fracture toughness of engineering materials in general, the effect of temperature, strain rate and strain level on the superplastic deformation, cavity nucleation and growth, and fracture behaviour are studied in an important rate-sensitive structural engineering material, 7475 Al, in the light of current models and thinking. The efficacy of hydrostatic pressure in reducing cavitation during superplastic deformation is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.