Abstract

Abstract This study applies the Boundary Element Method (BEM) for the fracture failure modelling of three-dimensional concrete structures subjected to concentrated boundary conditions. The non-requirement of domain mesh by the BEM enables high accuracy in the domain fields assessment in addition to less complex remeshing procedures during crack propagation. However, concentrated boundary conditions often occur in fracture mechanics. The Lagrangian version of the BEM enforces such boundary conditions approximately by small length elements, which lead to numerical instabilities or even inaccurate problem representation. This study proposes a formulation for representing properly concentrated boundary conditions within the Lagrangian BEM framework. Nonlinear fracture mechanics describes the material failure processes herein. The classical cohesive crack approach governs the nonlinear energy dissipation processes, in which constant and tangent operators solve the resulting nonlinear system. Three applications demonstrate the accuracy of the proposed formulation, in which the BEM responses are compared against numerical and experimental results available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.