Abstract

Biaxial compression tests based on an elliptical tunnel were conducted to study the failure characteristics and the meso-crack evolution mechanism of tunnels with different cross-sections constructed in sandstone. The progressive crack propagation process around the elliptical tunnel was investigated using a real-time digital image correlation (DIC) system. Numerical simulations were performed on egg-shaped, U-shaped, and straight-walled arched tunnels based on the mesoscopic parameters of the elliptical tunnel and following the principle of an equal cross-sectional area. The meso-crack evolution and stress conditions of the four types of tunnels were compared. The results show that (1) fractures around an elliptical tunnel were mainly distributed at the end of the long axis and mainly induce slabbing failure, and the failure mode is similar to a V-shaped notch; (2) strain localization is an important characteristic of rock fracturing, which forebodes the initiation, propagation, and coalescence paths of macro-cracks; and (3) the peak loads of tunnels with egg-shaped, U-shaped, and straight-walled arched cross-sections are 98.76%, 97.56%, and 90.57% that of an elliptical cross-section. The elliptical cross-section shows the optimal bearing capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call