Abstract

An apparatus is described for fractionating large quantities (400 g) of polythene into five roughly equal fractions using a fractional precipitation technique. Application of this method of fractionation to a linear polythene has shown that the width of the molecular-weight distribution of the successive fractions decreases as the fractionation proceeds. Consequently, the initial high-molecular-weight fractions require refractionation to produce equally narrow distributions in them as are found in later fractions. Good agreement is obtained with the experimentally determined values of the number-average and weight-average molecular weight for the parent polymer when the measured values of Mn and Mw for each fraction are used to calculate the values for the parent. The differential molecular-weight distribution function of the parent polymer was calculated on a Bendix G-15 computer from the data for the fractions by using the weight, number-average and weight-average molecular weight, measured for each fraction in conjunction with an assumed log-normal or negative binomial molecular-weight distribution function in each fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.