Abstract

This article investigates nonlocal, quasilinear generalizations of the classical biharmonic operator (-Delta )^2. These fractional p -biharmonic operators appear naturally in the variational characterization of the optimal fractional Poincaré constants in Bessel potential spaces. We study the following basic questions for anisotropic fractional p -biharmonic systems: existence and uniqueness of weak solutions to the associated interior source and exterior value problems, unique continuation properties, monotonicity relations, and inverse problems for the exterior Dirichlet-to-Neumann maps. Furthermore, we show the UCP for the fractional Laplacian in all Bessel potential spaces H^{t,p} for any tin {mathbb R}, 1 le p < infty and s in {mathbb R}_+ {setminus } {mathbb N}: If uin H^{t,p}({mathbb R}^n) satisfies (-Delta )^su=u=0 in a nonempty open set V, then uequiv 0 in {mathbb R}^n. This property of the fractional Laplacian is then used to obtain a UCP for the fractional p -biharmonic systems and plays a central role in the analysis of the associated inverse problems. Our proofs use variational methods and the Caffarelli–Silvestre extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.