Abstract
In this paper, we use the fractional Kelvin-Voigt model to investigate the propagation behavior of Rayleigh waves along the surface of viscoelastic functionally graded material (FGM) half space. Fractional derivatives combing with the power series technique are for the first time employed for the derivations of the governing equations. The influences of the viscous parameter, integer order, and fractional order derivative variations on Rayleigh wave dispersion relations are discussed. Numerical results show that the viscous parameter has little effect on the dispersion relations and attenuation curves of the Rayleigh waves in infinite half space. Furthermore, the rule regarding the trend of attenuation curves for various types of modes are studied when the Rayleigh wave is in normal dispersion. In general, the attenuation in the first mode is very small, so we can omit it. Moreover, the second mode is significantly different from other higher order modes in numerical value and rule of change. These results may provide theoretical guidance for the fabrication of new materials and the nondestructive evaluation in engineering applications, and might also serve to explain some phenomena surrounding seismic wave propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.